
A Practical Approach to
Predictable Software Development Performance in

Small to Medium Size Software Development Organizations

Steven Teleki
Vice President, Software Engineering

Y&L Consulting, Inc.
teleki@computer.org

Abstract- Every manager should be concerned about
economic performance. Economic performance hinges on
technical (product or service) performance. In case of many
organizations, success depends on having the necessary
software to operate, provide services to customers, or to design
and develop new products. Most of this software is purchased
or contracted out by the organization, but at least a critically
small portion of the software that the organization needs for its
success has to be developed by software folks that are part of
the organization. Even though software is developed by teams,
it still is an individual activity. Thus to get predictably high
software development team performance, it is imperative that
software development managers understand how to achieve
predictably high individual software development performance.

I. INTRODUCTION
A predictable performance enables an organization to plan and

execute with confidence its mission. The strategy to achieve
predictable performance in software development must consider
the entire chain of activities leading up to developing software,
from concept through the actual writing of the code, all the way to
maintenance. This article will focus on what is Software
Development Performance in general what is performance at the
individual level, and describes methods for managers to grow the
capabilities of the folks working in their organization.

II. SOFTWARE DEVELOPMENT PERFORMANCE
What do you know to be important, but you are unable to

measure? Way back on October 22, 1707 it was longitude (or how
far east or west you have traveled) [1]. When Sir Admiral
Clowdisley Shovell commandeered four warships onto the rocks at
a tail of islands at the southwest tip of England on that fatal day,
2,000 lives were lost as a result of the admiral’s inability to measure
longitude.

For software managers today measuring software development
performance would be as important as measuring longitude was in
1707 for a British Navy admiral. Yet today, we are still struggling
with this notion just as much as the admiral struggled with
longitude in 1707.
A. What is Software Development Performance?

Software Development Performance is the measure of an
organization’s capacity to fulfill its software development
obligations. It includes all activities that contribute to the
creation of software systems. Thus this measure not only
refers to the activity we call “programming” or “coding,” but
rather it encompasses all activities along the entire economic
value chain of software creation, from the concept phase
through maintenance.

Software Development Performance must encompass all
activities, since software is no longer created in isolation (if
it ever was), but rather software is created together with
other significant parts of complex systems.

This means that the organization’s Software Development
Performance must include the performance measures of the
activities that are part of the value creation chain, such as:

• Identifying problems
• Understanding the user’s tasks and work
• Modeling the user’s environment
• Capturing, analyzing, and modeling requirements
• Designing and architecting software
• Implementing software
• Testing, verifying, and validating software
• Understanding and deploying new technology
• Supporting and maintaining complex system, etc. …

B. Why Software Development Performance Matters?
It is very common for an organization’s economic

performance to depend on the organization’s technical
performance. Since almost every product or service contains
a significant software component, the organization’s
Software Development Performance greatly influences the
organization’s economic performance. In most of today’s
businesses it is nearly impossible to create and launch a new
product or service on time and on budget if the
organization’s software development performance is poor.

Imagine that you are trying to provide a new service to
your customers, but the software that is supposed to handle
the new pricing is not yet complete. You cannot launch the
service until the software is finished. Or, you want to market
a new device, but the software that can configure the device,
has not finished its test cycle, because the team found too
many defects in it. In these cases, even though everything
else might be ready, software will keep you from
successfully moving forward with your business plans.

As a result, we look at Software Development
Performance because it is a key success factor in
determining the short-term and long-term success of an
organization. As managers, our goal is to understand the
organization’s Software Development Performance and then
influence the factors that control the Software Development
Performance.

III. INDIVIDUAL SOFTWARE DEVELOPMENT
PERFORMANCE

Software development is knowledge intensive work. All
work is performed by people whom Drucker calls
“knowledge workers” [2]. There are two key managerial
tasks related to managing knowledge workers: identify the
talents and non-talents of the people and continually develop
people and grow their capabilities.
A. Identify Talents

The goal of predictable organization or team performance
can be achieved if it is built upon predictable individual
performance. Identifying the talents of an individual can

constitute the first step toward helping the person achieve
predictable individual performance.

Buckingham and Coffman suggest in [3] that “Every role
performed at excellence requires talent.” There is an
important lessons for managers in the previous statement: If
you want excellence, you must know what the talents are;
there is just no way around it.

The manager’s task is to work with each individual to
discover where his or her talents are and then cast the
individual in a role that requires the talent that the individual
has. Buckingham and Coffman give a definition of talent that
can serve as a starting point for the talent discovery process:
“A talent is a recurring pattern of thought, feeling, or
behavior that can be productively applied” [3]. By this
definition, talent is not something special that only a chosen
few possess, but rather is a natural occurrence that all of us
have.

According to the authors of [3] we were not educated to
think about talent, or to even recognize one when we see it
outside of sports or entertainment. Even when we are asked,
we have difficulty to name what our talents are and we keep
talking about the things we do or what our job or role is.
B. Cope with Non-Talents

A person has many more non-talents then talents. The
manager needs to compensate for a person’s non-talents by
building teams of people with complimentary talents and by
working with the individual to devise mechanisms to
compensate for the non-talents.

In monthly or bi-monthly one-on-one conversations
between the manager and each of his or her team members
the focus should be mostly figuring out how to improve the
person’s talents (70%) and a bit on how to minimize the
effect of the non-talents (30%). There is no use in trying to
make somebody an expert in areas where they have no
talent. This will only lead to frustration on everybody’s part.

Identifying the talents and non-talents of individuals in
small organizations is vital, since in a small organization
each person carries a larger percentage of the overall
workload, and thus any improvement in the person’s
performance can significantly impact the organization’s
overall performance.

IV. METHODS FOR GROWING CAPABILITIES
Drucker points out in [2] that knowledge businesses may

have a better option for considering the knowledge workers
as assets, rather then costs on their balance sheet. Assets are
meant to grow and to produce more, but costs are meant to
be cut. What does it mean to grow people’s capabilities? It
means that people continually improve their capacity to
create by learning, practice, and doing.

The farmers of the world had figured out millennia ago: if
one eats all one’s seeds during the winter and fall, then there
will be nothing to put in the ground in the spring. As a result
there will be nothing to harvest the next fall. Saving the
seeds in the software business means enabling the folks in
the organization to invest around 10% of their time into
learning and professional growth related activities. Where
will next year’s performance come from if not from the
investments made today?

Some of the current learning practices can be very
expensive: conferences, training courses, tutorials,
consultants, etc. They are important, but one conference a

year will not provide sufficient learning opportunity that is
needed to grow a person professionally.

For managers on a limited budget there are plenty of low-
cost options: organize study groups, and lunch & learn, sign
up people for professional associations offering regular
presentations, open source projects, assisting people on
technical mailing lists.
A. Study Groups

For $50 (the price of a book) you can buy a person’s
commitment to learning for an 8 to 10 week period. Study
groups work best when at least some of the participating
folks are working in the same group or unit.
B. Lunch & Learn

This is one of the most productive forms of continuing
education for knowledge workers. The advantage of the
format comes from having a member of the organization
present on a topic of either their or the group’s choosing.
When people prepare to deliver a presentation to their peers
they learn a tremendous amount.
C. Professional Associations

Encourage the people from your organization to attend
local user group presentations and to become involved in
trade associations. All of them provide ample low-cost
learning opportunities. Most of these groups have monthly
meetings with a presentation on a technical topic. If you’re
reading this paper, chances are you already belong to the
IEEE. See that the people working for you join the
organization as well, maybe make membership in IEEE a
company benefit.
D. Open Source Projects

Encouraging people to contribute to Open Source projects
allows them to see how would work be when there is a very
different set of constraints placed on them. Having literally
potentially millions of people look at your code can be
troubling for some, and exhilarating for others. The
opportunity is to learn to live in a glass house and work in an
environment where you have to earn the respect of your
peers without a formal hierarchy.
E. Technical Mailing Lists Participation

Participating as a contributor on a technical mailing list
can be both gratifying and challenging at the same time.
When an individual responds to a question, then others
might question the validity of the response, and make
corrections to it. This can hurt at first, but as the person
acquires more knowledge, the answers can become the gold
standard of the domain where he or she is contributing.

CONCLUSION
While it is impossible to describe a complete system for

predictable software development in a short paper, the goal
here was to give the reader a brief overview of the personal
and organizational software development performance
challenge.

ACKNOWLEDGMENT
Thanks to Dan Massey for his constructive feedback on

the early draft of this paper.
REFERENCES

[1] D. Sobel, Longitude: The True Story of a Lone Genius
Who Solved the Greatest Scientific Problem of His Time.
New York, NY: Penguin Books, 1995.

[2] P. Drucker, Management Challenges for the 21st
Century. New York, NY: HarperBusiness, 1999.

[3] M. Buckingham, C. Coffman, First, Break All The
Rules. New York, NY: Simon & Schuster, 1999.

Revised: 15 July, 2004

	Steven Teleki
	What is Software Development Performance?
	Why Software Development Performance Matters?
	Identify Talents
	Cope with Non-Talents
	Study Groups
	Lunch & Learn
	Professional Associations
	Open Source Projects
	Technical Mailing Lists Participation

